The Goldilocks Dilemma

An old posting about why intermittency is not a big deal came to my attention today.  I re-read some of what had been said, especially when I had just sent out a paper on the topic yesterday.

I believe that the value of electric “energy” is often overstated.  The author of the old posting, Chris Varrone, inadvertently acknowledges this when he wrote

However, the energy in wind is worth 100% of the energy in nuclear (or anything else) in the spot market; wind energy in the day-ahead market may be worth a little less, but this can be “firmed” using energy trading desks or by using other assets in the operator’s fleet.

If the day to day differential can be handled by firming with other assets, then the value of the electricity is not just energy.  It is not worth debating what to call this other value, but a substantial part of the value in the spot market is something other than energy.

As to The Goldilocks Dilemma, the paper I sent out yesterday, I began by asking

Is the price paid to dispatchable generation too high, too low, or just right for intermittent generation?

I then answer

Though intermittent generators often argue that they should receive the same price as dispatchable generation and some utilities argue that they should pay less to intermittent generators, sometimes intermittent generators should face a higher price than dispatchable generators, such as when intermittent generation is part of the market during instances of extreme shortage.

The entire paper is available on my web site, the companion to this blog site.  Look for the hot link to the library near the bottom of the first page.  A hot link for the article is near the bottom of library index in the section called drafts.

Utility 2.0 or Just Utility 1.X

On Tuesday, 2013 October 29, I attended a discussion of the report “Utility 2.0: Building the Next-Gen Electric Grid through Innovation.”  I left feeling that the innovations discussed are just more of the same, just as I have often described the smartgrid as SCADA[1] on steroids.  The innovations are not creating Utility 2.0 as much as making slow changes to the existing utility structure, just varying the X in Utility 1.X.

Electric utilities began automating the electric system as soon as Edison started his first microgrid, the Pearl Street Station.  At one time, an operator would read a frequency meter to determine the balance between supply and demand.  In the earliest days, Edison had a panel of light bulbs that would be switched on and off to maintain that balance, which was a strange form of load management.  The operator would also be able to vary the generation by change the water flow to a hydro-turbine, the steam from the boiler, and the fuel into the boiler.  Edison invented control mechanisms that were cheaper than the labor costs of the operator, control mechanisms that his companies also sold to other utilities.  These control mechanisms can be considered to be some of the first SCADA systems.  As the control mechanisms and telephony got cheaper and labor become more expensive, more labor saving devices could be installed.  The policy of having an operator at every substation was replaced by remote devices, lowering the cost of utility service.  The smartgrid concept is just more of the same, as computers become cheaper and faster, remote metering less expensive, and remote control easier to accomplish.

The true quantum change in utility operations occurred in federal law.  PUHCA[2] effectively prohibited private individuals from selling electricity to a utility, by defining the seller to be a utility, subject to utility type regulation and to prohibitions on non-utility operations.  Because of PUHCA, Dow Chemical operated its chemical plants as the ultimate microgrid, running asynchronously and unconnected to local utilities.  Dupont installed disconnect switches that would separate its microgrid chemical plant from the local utility if power began to flow out of the plant.  International Power and Paper became International Paper.  Exxon intentionally underinvested in its steam plants, limiting its ability to produce low cost electricity.  PURPA[3] provided exemptions from PUHCA for cogeneration plants such as those mentioned here and for qualifying small producers using renewable resources.  The latter exemption was almost in anticipation to the growth of roof top solar photovoltaics (PV).  These facilities needed utility markets into which to sell their surplus, which generally resulted in individually negotiated contracts.  The creation of the ISO[4] concept could be considered to be an outgrowth of the desire by these large independent power producers (IPPs) for a broader, more competitive market, instead of the monopsony into which they had been selling.  ISOs now have a footprint covering about 2/3 of the lower US, excluding Alaska and Hawaii.

ISOs generally deal only with larger blocks of power, some requiring participants to aggregate at least 25 MW of generation or load.  ISO control generally does not reach down into the distribution system.  The continued growth of labor costs and the continued decline of automation costs has allowed the SCADA concept to be economic on the distribution grid, including down to the customer level.  This expansion of SCADA to the distribution system will soon require changes in the way the distribution system is priced, both for purposes of equity and for Edison’s purpose of controlling the system.

  • The growth in rooftop PV is dramatically reducing the energy that utilities transport across their distribution system.  This energy reduction generally reduces utility revenue and utility income.  Under conventional utility rate making, the result is an increase in the unit price charged by the utility for that service.  Some pundits point out that the owners of the rooftop PV panels are generally richer than the rest of the population served by the utility.  These solar customers are cutting the energy they consumer, though not necessarily their requirements on the utility to provide some service through the same wires.  The rate making dynamics thus result in other, poorer customers seemingly subsidizing the richer customers who have made the choice for rooftop solar.  This seems inequitable to some.
  • The growth in rooftop PV has outstripped the loads on some distribution feeders, with reports that the generation capacity has sometimes reached three times the load on the feeder.  These loading levels cause operating problems in the form of high voltages and excessive line losses.  During periods of high voltage and excessive line loss, prices can provide an incentive for consumers to modify their behavior.  The genie seems to be out of the bottle in regard to allowing the utility to exert direct physical control over PV solar, but real time prices could provide some economic control in place of the tradition utility command and control approach.

I have discussed the need for real time pricing of the use of the distribution grid in “Net Metering:  Identifying The Hidden Costs;  Then Paying For Them,” Energy Central, 2013September 20.[5] I have described a method in “Dynamic ‘Distribution’ Grid Pricing.”[6]

Changes in state regulations have also impacted this balance between labor costs and automation costs.  Some states now have performance incentives based on the number of outages and the typical restoration times.  The cost associated with the time of sending a line crew to close a circuit breaker now competes with the incentives to get that closure faster, through the use of automation.

In conclusion, the increase in utility automation is not so much innovation as it is a continuation of the historic utility practice of the economic substitution of lower cost technology for the ever increasing cost of labor.  The 1978 change in federal law led to the growth of ISOs and bulk power markets, but did not reach down to the distribution level, perhaps of the lack of non-utility industrial support.  The growth in rooftop PV will provide the incentives for expanding the real time markets down the distribution grid to retail consumers.  Though computers indeed have gone from 1.0 (vacuum tubes), to 2.0 (transistors), to 3.0 (integrated circuits), I don’t see the current changes proposed for utilities to be much more than following the competition between labor costs and automation costs.  We are still Utility 1.X, not Utility 2.0.



[1] Supervisory Control And Data Acquisition.

[2] Public Utility Holding Company Act of 1935

[3] Public Utility Regulatory Policies Act of 1978

[4] Independent System Operator

[6] A draft of this paper is available for free download on my web page, www.LivelyUtility.com

Load Profiles and Unscheduled Flows of Electricity

In response to my earlier comments about a Fox News article equating decoupling with socialism, I received a question about time of use rate making and how my comments regarding unscheduled flows of electricity picked on small utilities. My response follows.

Most utilities group customers by their consumption patterns. You are grouped with McMansions and with hovels. Not because you have the same consumption, but the same pattern. Let’s say that a McMansion uses 10 times the energy that you use each month. Then, if you look at the consumption for the period defined as “on peak”, the McMansion will use about 10 times the amount of electricity that you use “on peak”. Similarly during any other well defined period. TOU pricing will not differentiate your average price from his average price, or at least not much.

Not much unless you or the utility invest in devices that control your consumption patterns. Thirty five years ago I worked for American Electric Power (AEP) in its New York City office. I helped investigate ceramic storage, a concept then in use in England. Turn on electricity to these “hot rocks” at night and then during the day just blow a fan across them to get heat into the room. Conversely, there is ice storage. Connect your A/C unit to a tank that looks like a water heater. At night dump refrigerant through the Ice Bear (a commercial brand I have heard of) and create ice. During the day, put the refrigerant through the Ice Bear instead of running your compressor. This creates huge swings in the multiplier between you and McMansion. During the night the multiplier might be down to 5 or less. During the day, the multiplier might be up to 20. The result is that you pay a lower average rate using TOU if you manage your load.

Dynamic pricing means to me a moment by moment change in the price of electricity. During the hottest day of the year, the price might soar by a factor of 100. Avoid 7 hours at that high rate and you have reduced your average price by 1% (730 hours on average in the month) or more, at least if I have done the math correctly. Many utilities have equipment that they attach to your AC compressor to allow them to turn it off during such periods. The standard pricing approach is to pay you $5/month. They save money by avoiding some of the energy at the 100 times multiple.

Pricing is considered by many to be a form of rationing. Economists say that pricing is the best way to ration a commodity. It gets people to give up lower valued uses when there is a scarcity. I like to think of it as a way to soak those who can afford it so I can put in my controllers that allow me to store energy thermally. In some jargons, my thermal storage can be considered to be a form of supply side, though most just look at it as demand side.

As to whether the small utility gets the free ride or the large utility, it depends on the circumstance. My employer AEP, one of the largest in the country, may have been getting a free ride by building fewer very large generators. That lowered their average cost but they got reliability by interconnecting with other utilities that had many, though smaller, generators. Even the transmission example is not clear cut either way, especially when the high voltage line fails and the low voltage line experiences huge electrical line losses.

The Smart Grid Needs Real Time Pricing of the Distribution Grid

When I read the January-February edition of IEEE Power & Energy Magazine earlier this week, I got hung up on figure 1 on page 53, “The price of energy in the PJM market.”  Figure 1 shows 6 hours of prices every 5 minutes.  There appears to be five prices for each time point which would represent 5 locations on the PJM system.  There is the obligatory price spike to $210/MWH and a price suppression to minus $40/MWH.

Curiously, the prices for the 5 locations seem always to fall almost on top of each other, even during the price spike.  Except during the price suppression period.  There, two of the prices actually went up slightly and were not suppressed, one dropped to the previously stated minus $40/MWH and the other two dropped significantly though not to minus $40/MWH, though one did go slightly negative.

My analysis is that the price spike was a generation related issue while the price suppression was a transmission related issue.

This edition of IEEE Power & Energy Magazine focuses exclusively on the smart grid.  Since the related article was about demand response in Chicago, I thought that there should be more about using demand response to handle constraints on the distribution grid, the section of the wires that most people discuss in regard to the smart grid.  Thus, the geographic price differentials should be on the distribution grid, which would be a issue for Exelon’s Commonwealth Edison instead of a transmission issue for PJM.

Using demand response to address generation issues is old hat, the load management programs of a few decades ago.  And though figure 1 shows some geographic dispersion of prices and thus, perhaps, demand response being worthwhile for the transmission portion of the wires associated with the smart grid concept, my experience with PJM suggests that the price suppression was probably most severe in the Chicago area, suggesting that there was too little load in that area instead of the need for demand response.

I believe we need more demand response, not just to handle the G&T issues associated with figure 1, but more especially to handle overloads on the distribution grid.  Electric vehicles (according to EPRI) will overload the majority of the transformers that EPRI studied. 

  • The presence of figure 1 in the IEEE P&E Magazine suggests that many people believe that we can use real time prices to get more demand response.
  • The EPRI study tells me we need demand response to handle distribution issues. 

Putting it together, we need a way to price the use of the distribution grid on a real time basis, just as PJM has put into place a way to price the G&T on a real time basis.

I came to this distribution pricing conclusion last January while speaking at the IEEE/NIST smart grid conference.  My paper on the subject is “Dynamic Pricing: Using Smart Meters to Solve Electric Vehicles Related Distribution Overloads,” Metering International, Issue 3, 2010, which came out last Fall.